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Abstract
We seek to derive the probability—expressed in terms of the Hilbert–Schmidt
(Euclidean or flat) metric—that a generic (nine-dimensional) real two-qubit
system is separable, by implementing the well-known Peres–Horodecki test
on the partial transposes (PTs) of the associated 4 × 4 density matrices (ρ).
But the full implementation of the test—requiring that the determinant of the
PT be nonnegative for separability to hold—appears to be, at least presently,
computationally intractable. So, we have previously implemented—using
the auxiliary concept of a diagonal-entry-parameterized separability function
(DESF)—the weaker implied test of nonnegativity of the six 2 × 2 principal
minors of the PT. This yielded an exact upper bound on the separability
probability of 1024

135π2 ≈ 0.768 54. Here, we piece together (reflection-
symmetric) results obtained by requiring that each of the four 3 × 3 principal
minors of the PT, in turn, be nonnegative, giving an improved/reduced upper
bound of 22

35 ≈ 0.628 571. Then, we conclude that a still further improved
upper bound of 1129

2100 ≈ 0.537 619 can be found by similarly piecing together
the (reflection-symmetric) results of enforcing the simultaneous nonnegativity
of certain pairs of the four 3 × 3 principal minors. Numerical simulations—as
opposed to exact symbolic calculations—indicate, on the other hand, that the
true probability is certainly less than 1

2 . Our analyses lead us to suggest
a possible form for the true DESF, yielding a separability probability of
29
64 ≈ 0.453 125, while the absolute separability probability of 6928−2205π

29/2 ≈
0.034 8338 provides the best exact lower bound established so far. In deriving
our improved upper bounds, we rely repeatedly upon the use of certain integrals
over cubes that arise. Finally, we apply an independence assumption to a pair
of DESFs that comes close to reproducing our numerical estimate of the true
separability function.

PACS numbers: 03.67.Mn, 02.10.Ud, 02.30.Cj, 02.40.Ft, 02.40.Ky
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Figure 1. Three forms of diagonal-entry-parameterized separability functions (DESFs).

Życzkowski, Horodecki, Sanpera and Lewenstein, in a much-cited article [1], have given
‘philosophical’, ‘practical’ and ‘physical’ reasons for studying ‘separability probabilities’.
We have examined the associated problems which arise, using the volume elements of several
metrics of interest as measures on the quantum states, in various numerical and theoretical
studies [2–8, 11].

In these regards, we begin our presentation by directing the reader’s attention to figure 1.
These depict various forms of ‘diagonal-entry-parameterized separability functions’ (DESFs)
[7, 9]—as opposed to ‘eigenvalue-parameterized separability functions (ESFs) [8, 10, 11]—
that we will employ here to obtain estimates and simple exact upper bounds on the Hilbert–
Schmidt (HS) probability that a generic (nine-dimensional) real two-qubit system is separable.

The subordinate of the three curves in figure 1—derived using an extensive quasi-Monte
Carlo (Tezuka–Faure [12, 13]) six-dimensional numerical integration procedure—provides
an estimate of the true, but so-far not exactly determined DESF. The dominant of the three
curves—readily obtainable from results reported in [9, section VII]—has the form

Sdom(ξ) =
{ 1

2 e−3ξ (3 e2ξ − 1) ξ > 0
− 1

2 eξ (e2ξ − 3) ξ < 0.
(1)

The intermediate of the three curves, which we first report here, has the same—differing only
in constants—functional form

Sint(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

9π2

2048
e−3ξ (27 e2ξ − 7) ξ > 0

− 9π2

2048
eξ (7 e2ξ − 27) ξ < 0.

(2)

With each of these three curves we can obtain an associated estimate or upper bound on
the desired HS separability probability

(
P HS

sep/real

)
. This is accomplished by integrating over

ξ ∈ [−∞,∞] the product of the corresponding curve with the function (figure 2) (based on
the Jacobian of a coordinate transformation, to be described below)

J (ξ)= 64 csch9(ξ)(−160 sinh(2ξ)− 25 sinh(4ξ) + 12ξ(16 cosh(2ξ) + cosh(4ξ) + 18))

27π2
, (3)

2



J. Phys. A: Math. Theor. 43 (2010) 195302 P B Slater

4 2 2 4
ξ

0.1

0.2

0.3

0.4

0.5

J ξ

Figure 2. Jacobian (3), which when multiplied by a separability function and integrated over
ξ ∈ [−∞,∞] yields the associated Hilbert–Schmidt separability probability.

that is,

P HS
sep/real =

∫ ∞

−∞
S(ξ)J (ξ) dξ. (4)

Proceeding in this way, we obtain an upper bound on the HS separability probability
of 1024

135π2 ≈ 0.768 54 based on the dominant of the three curves, 22
35 ≈ 0.628 571 using the

intermediate curve, and an estimate of 0.452 8427 for the true probability with the subordinate,
numerically derived curve. (From our work in [11, equation (25)], we already know that the
HS probability of a generic real two-qubit system being absolutely separable—that is not
entanglable by any unitary transformation—is 6928−2205π

29/2 ≈ 0.034 8338, which then serves as
a lower bound on the corresponding HS (absolute plus nonabsolute) separability probability
itself (cf [14] [11, equation (29)]).)

The variable ξ used in the above presentation is the logarithm of the square root of the
ratio of the product of the 11- and 44-entry of the associated real 4 × 4 density matrix (ρ) to
the product of the 22- and 33-entries, that is

ξ = log
√

ρ11ρ44

ρ22ρ33
= 1

2
log

ρ11ρ44

ρ22ρ33
. (5)

(In our previous studies [7, 9], we have employed the alternative variables, ν = ρ11ρ44

ρ22ρ33
and

μ =
√

ρ11ρ44

ρ22ρ33
, but now switch to the (more symmetric) form (5). Importantly, only the ‘cross-

product ratio’ of diagonal entries is needed in our parameterization to test for separability,
and not the individual entries themselves.) The Jacobian (3) used in our calculations is
obtained by the transformation of one of the diagonal entries, say ρ33, to ξ and integrating
the Hilbert–Schmidt (Lebesgue) volume element (of course, ρ44 = 1 − ρ11 − ρ22 − ρ33)
[15, p 13646]

dVHS = (ρ11ρ22ρ33ρ44)
3β

2 dρ11 dρ22 dρ33, β = 1 (6)

over ρ11 and ρ22 and normalizing the result. (To obtain the corresponding HS volume elements
for the complex 4 × 4 density matrices, one must employ—conforming to a pattern familiar
from random matrix theory—β = 2 and β = 4 in the quaternionic case (cf [16]).)
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Figure 3. The two distinct (red and blue) separability functions obtained from the four 3 × 3
principal minors, the ‘envelope’ (lesser branches) of which defines the intermediate curve in

figure 1. The y-intercepts of the two curves are identically 45π2

512 ≈ 0.867 446.

The use of the celebrated Peres–Horodecki separability test [17, 18] is central to our
analyses. Ideally, we would be able to require that the determinant of the partial transpose
of ρ be nonnegative to guarantee separability [19, 20]. However, this has so far proved to
be too computationally demanding a (fourth-degree, high-dimensional) task for us to enforce
(cf [9, equation (7)]). But, in [7], we did succeed in implementing the weaker implied test
that all the six 2 × 2 principal minors of the partial transpose of ρ be nonnegative, giving us
the dominant curve in figure 1. (Actually, only two of the minors differ nontrivially from the
analogous set of (nonnegative, of course) minors of ρ itself.) To derive the sharper intermediate
curve here, we extended this approach to the four 3 × 3 principal minors. Actually, we found
that requiring each of the four minors, in turn, to be nonnegative, yielded two pairs of identical
results. Further, one of these results

S3×3(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

9π2 e−3ξ (27 e2ξ − 7)

2048
ξ > 0

3π e−3ξ (eξ
√

1 − e2ξ (37 e2ξ + 2 e4ξ + 21) + 3(27 e2ξ − 7) sin−1(eξ ))

1024
ξ < 0

(7)

could be obtained from the other set by the transformation ξ → −ξ . This curve (7) and its
reflection around ξ = 0 are shown in figure 3. The intermediate curve (2) in figure 1, first
reported here, was constructed by joining the sharper segments of these two curves over the
two half-axes. A parallel strategy had been pursued with the 2 × 2 minors. The comparable
results to (7) and figure 3 for the 2 × 2 minors investigation [7] are

S2×2(ξ) =
{

e−2ξ (2 sinh(ξ) + cosh(ξ)) ξ > 0
1 ξ < 0

(8)

and figure 4.
For the intermediate curve in figure 1 we have the nontrivial y-axis intercept of

45π2

512 ≈ 0.867 446 (the intercept for the dominant curve being simply 1), while the estimate
of the true intercept using the numerically generated curve is 0.612 243, quite close to our
previously conjectured value of 135π2

2176 ≈ 0.612 315 [7].
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Figure 4. The two distinct (red and blue) separability functions (discontinuous at ξ = 0) obtained
from the six 2×2 principal minors, the ‘envelope’ (lesser branches) of which defines the dominant
curve in figure 1.

In obtaining our several results, we used the ‘Bloore/correlation’ parameterization
of density matrices [21–23] and accompanying ranges of integration—generated by the
cylindrical algebraic decomposition procedure [24, 25], implementing the requirement that ρ

be nonnegative definite—presented in [9, equations (3)–(5)]. The computational tractability of
utilizing the 3×3 principal minors of the partial transpose in this coordinate frame appeared to
stem from the fact that each of these four quantities only contains three of the six off-diagonal
variables (zij ) employed in the full parameterization (each set of three variables, additionally
and conveniently, sharing a common row/column subscript). (The nine-dimensional convex
set of real two-qubit density matrices is parameterized by six off-diagonal—zij = ρij√

ρiiρjj
—and

three diagonal variables—ρii .) Integrating out the three variables not present in the constraint
simply leaves us with a constrained (Boolean) integration over the cube [−1, 1]3, as indicated
in [9, equation (3)]—see (15) also. We appropriately permuted the subscripts in the indicated
coordinate system, so that we could study all four of the minors (thus, finding that they fell
into two equal sets). Of course, such a simplifying integration strategy is not available for
the determinant of the partial transpose itself, which contains all the six off-diagonal variables
(zij ), rather than simply three.

Each of the constrained integrations we had initially used, employed as its constraint
the nonnegativity of a single 2 × 2 or 3 × 3 principal minor of the partial transpose of ρ.
(However, above we were able to splice together results, taking the sharper/tighter bounds
over the half-axes provided by individual outcomes.) We had initially been unable—using
either the (Bloore [21]) density-matrix parameterization presented in [9] or the interesting
partial-correlation parameterization indicated in [22]—to perform constrained integrations in
which two or more 2 × 2 or 3 × 3 minors (and a fortiori the determinant) are required to be
simultaneously nonnegative. (It, then, remained an open question whether or not being able
to do so would simply lead to the dominant and intermediate curves given already in figure 1
and by (1) and (2). However, we were able eventually to answer this question positively for
the 2 × 2 minors.)

We can, however, rather convincingly—but in a somewhat heuristic manner—reduce
the derived upper bound on the HS separability probability of generic real two-qubit

5
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Figure 5. The difference between the numerically generated subordinate function in figure 5
and a hypothetically true separability function (9)—fitting a general pattern observed—giving a
separability probability of 29

64 ≈ 0.453 125.

systems from 22
35 ≈ 0.628 571 to 0.576 219 by using a new curve—having a y-intercept

of
(

45π2

512

)2 ≈ 0.752 462 as a DESF. (We apply a similar independence ansatz at the very end
of the paper with quite interesting results (figure 9).) This curve is obtained by taking the
product of the two curves displayed in figure 3 (that is, the product of the function (2) with its
reflection about ξ = 0). A plot of the result shows that it is both subordinate to the intermediate
curve in figure 1, as is obvious it must be, and clearly dominates the numerically generated
curve there, which is an estimate of the true DESF. (Since each of the two curves in figure 4
is simply unity over a half-axis, a parallel strategy in the 2 × 2 minors analysis can, of course,
yield no nontrivial upper-bound reduction from 1024

135π2 ≈ 0.768 54.)
The ‘twofold-ratio’ theorem of Szarek, Bengtsson and Życzkowski [26]—motivated by

the numerical results reported in [5]—allows us to immediately obtain exact upper bounds,
as well, on the HS separability probability for generic (eight-dimensional) real minimally
degenerate real two-qubit systems (boundary states having a single eigenvalue zero). These
upper bounds would, then, be one-half those applicable to the nondegenerate case—that is,

512
135π2 ≈ 0.384 27 and 11

35 ≈ 0.314 286. Further, we can, using the results of our numerical
study, similarly obtain an induced estimate, 0.226 421, of the true probability.

The two sets of derived functions (1) and (2), based respectively on the 2 × 2 and 3 × 3
minors, have the same functional forms, but with differing sets of constants ({1, 2, 3, 1}
versus {9, 2048 = 211, 27, 7}). It seems natural, then, to conjecture that the true separability
function—which must be based on the determinant of the partial transpose [9, equation (7)]
[19, 20], that is, the single 4 × 4 minor—will also adhere to the same functional form, but
with a different set of constants.

In fact, pursuing this line of thought, as an exercise, we have found that the function

Sconjecture(ξ) =
{

315 e−3ξ (−5+18 e2ξ )π2

216 ξ > 0

− 315 eξ (−18+5 e2ξ )π2

216 ξ < 0
(9)

fits (figure 5) the numerically generated subordinate curve in figure 1 quite well, yielding an HS
separability probability of 29

64 ≡ 29
26 ≈ 0.453 125, and a y-intercept of 4095π2

216 ≈ 0.6167. (Then,
by the twofold-ratio theorem [26], the HS separability probability of the minimally degenerate

6
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Figure 6. The difference between the numerically generated subordinate function in figure 5
and the previously conjectured true separability function (10), giving a separability probability of
8
17 ≈ 0.470 588, and a poorer fit than figure 5.

(boundary) states would be 29
128 ≡ 29

27 ≈ 0.226 563. Also, we have been able to find a number
of other curves, adhering to this same general structure, fitting the subordinate curve in figure 1
equally as well, and again yielding 29

64 as a separability probability, in addition to well-fitting
curves yielding somewhat less simple fractions–such as 163

360 ≈ 0.452 778, 367
810 ≈ 0.453 086

and 428
945 ≈ 0.452 91.) We are obliged, however, to note that in [7, section IX.A] we had

advanced—based on somewhat different considerations (scaling constants, in particular) than
here—the hypothesis that this probability is 8

17 ≈ 0.470 588, with an associated DESF equal
to

Sprevious(ξ) =
{

135 e−3ξ (−1+3 e2ξ )π2

28×17 ξ > 0

− 135 eξ (−3+e2ξ )π2

28×17 ξ < 0.
(10)

(However, our best numerical estimate at that point was 0.453 8838 [9, section V.A.2]
[7, section IX.A], rather close to our current-study estimate of 0.452 8427. By computing
standard errors of the mean, we can establish an [≈95%] confidence range—four standard
deviations wide—for this latter estimate of (0.451 634, 0.454 051) that does contain 29

64 ≈
0.453 125. A comparable plot (figure 6) to figure 5 shows (10) to provide a considerably
poorer fit.)

One might further speculate—in line with random matrix theory and our previous
analyses [7]—that the DESF for the generic (15-dimensional) complex two-qubit systems
is proportional to the square of (9). If the constant of proportionality were simply taken to
equal unity, the associated HS separability probability, using the measure (6) with β = 2,
would be 30 660 525π4

11 811 160 064 = 35×52×72×103π4

230×11 ≈ 0.252 864, rather close to the value 8
33 ≈ 0.242 424

conjectured, for a number of reasons, in [7, section IX.B]. Proceeding similarly, using the
fourth power of (9), rather than the square and the measure (6) with β = 4, we obtain
the HS quaternionic probability analogue of 4893 927 891 755 175π8

535 315 866 107 766 636 544 = 310×52×75×13×15173π8

256×17×19×23 ≈
0.086 7454.

Duplicating the line of analysis of the immediately preceding paragraph, but now using the
intermediate curve (2) given in figure 1, instead of the conjectured curve (9)—and taking the
constant of proportionality again to equal 1—we obtain tentative (induced) exact upper bounds

7
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Figure 7. The subordinate curve is the same numerically derived DESF estimate of the true
separability probability displayed as the subordinate curve in figure 1. The other two curves
are obtained by simultaneously enforcing the nonnegativity of certain pairs of the four 3 × 3
principal minors of the partial transpose of ρ. Both of these superior curves intercept the ξ -axis at
11 127π2

143 360 ≈ 0.766 037.

on the HS separability probability for the complex two-qubit states of 752 517π4

149 946 368 ≈ 0.488 855

and 14 092 854 769 917π8

408 413 594 137 395 200 ≈ 0.327 414 for the quaternionic two-qubit states.
In [7], we studied several two-qubit real, complex and mixed scenarios, in which—in

order to obtain exact HS separability probabilities—certain of the off-diagonal entries were
a priori set to zero. In one such (seven-dimensional) scenario, we nullified four of the off-
diagonal entries, allowing only the (1,4)- and (2,3)-entries (the ones interchanged under partial
transposition) to be complex [7, section II.B.3]. The associated HS separability probability was
2
5 . We have now been able—parameterizing the off-diagonal entries using polar coordinates—
to extend this seven-dimensional scenario to a nine-dimensional one, allowing, additionally,
any single one of the remaining four off-diagonal entries ((1,2), (1,3), (2,4) or (3,4)) to be
arbitrary complex. The associated DESF is

S(ξ) =
{ 1

3 e−4ξ (−1 + 4 e2ξ ) ξ > 0
− 1

3 e2ξ (−4 + e2ξ ) ξ < 0,
(11)

with an accompanying HS separability probability of 17
35 ≈ 0.485 714.

Let us now present an additional figure (figure 7) showing—as in figure 1—three DESFs.
The subordinate curve in this new figure is identically the same as the subordinate numerically
estimated curve in figure 1. The dominant of the three curves has the form{

−π e−6ξ (
√

e2ξ −1(1696 e2ξ −7665 e4ξ −5346 e6ξ +188)+3 e4ξ (−7273 e2ξ +1782 e4ξ +1782) csc−1(eξ ))

71 680 ξ > 0

−π e−2ξ (eξ
√

1−e2ξ (−7665 e2ξ +1696 e4ξ +188 e6ξ −5346)+3(−7273 e2ξ +1782 e4ξ +1782) sin−1(eξ ))

71 680 ξ < 0
(12)

and the intermediate curve (obtained, as earlier (cf figure 3 by splicing together the ξ < 0 and
ξ > 0 lesser branches of two curves equal under reflection around ξ = 0), the form{

3π2 e−3ξ (18 873 e2ξ −4037)
573 440 ξ > 0

3π2 eξ (18 873−4037 e2ξ )
573 440 ξ < 0.

(13)

8
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(This does possess the same basic functional form as already encountered in (1), (2) and
(9)). Again, as in figure 1, of course, the numerically generated curve yields a separability
probability estimate of 0.452 8427, while the dominant curve yields 0.585 542, and the
intermediate curve, an exact value of 1129

2100 = 1129
22×3×52×7 ≈ 0.537 619. (Both of these last

two curves intercept the ξ -axis at 11 127π2

143 360 ≈ 0.766 037.) Thus, 1129
2100 < 22

35 provides a further
improved exact upper bound on the true Hilbert–Schmidt separability probability. The two
superior curves in figure 7 are obtained by enforcing simultaneously the nonnegativity of
certain pairs of the four 3 × 3 principal minors of the partial transpose of ρ. The dominant
curve (12) is derived by pairing the first and second minors (or, equivalently, three other
possible pairs), while the intermediate curve (13) is achieved uniquely by coupling (taking
the lesser branches) the results pairing the second with the third minor with the (reflection-
symmetric) results pairing the first with the fourth minor. (By the kth minor we mean the one
obtained by elimination from the partial transpose of ρ of its kth row and column.)

Given that the direct/naive enforcement of the simultaneous nonnegativity of pairs of
3 × 3 principal minors (requiring, a constrained five-dimensional integration) appeared to be
intractable, we resorted to an alternative strategy to obtain the two superior curves in figure 7.
We exploited the fact already noted above that each of the four 3 × 3 principal minors is
parameterized by only three (of the six) off-diagonal Bloore (correlation) variables zij ’s, with
all of the three sharing a common row/column index (such as the common i index in zij , zik, zil ,
etc), for example, the fourth minor (with i = 1, j = 2, k = 3, l = 4) takes the form

minor3×3 = 2 eξ zij zikzil − z2
ij − z2

ik − e2ξ z2
il + 1. (14)

We can, then, arrange—by using a suitably chosen cylindrical algebraic decomposition—
that any such set of three variables (sharing a common index) comprises the last three to be
integrated over of the six variables. By performing the first (unconstrained) three of the six
one-dimensional integrations (over, say, zjk, zjl and zkl , in our example), we are simply left
with (cubical) integrations of the form∫ 1

−1

∫ 1

−1

∫ 1

−1

(
3

4

)3 (
1 − z2

ij

)
(1 − z2

ik

)(
1 − z2

il

)
dzij dzik dzil = 1. (15)

(By reparameterizing the zij ’s in terms of partial correlations [22], one could re-express the full
six-dimensional integration as the integral of a simple product measure over a six-dimensional
hypercube. But, then, the nonnegativity requirements on the partial transpose appear to take
on quite cumbersome forms.) Only, at this stage of integration—after having integrated out
three (extraneous) variables—do we then need to impose (inside the integral signs) the three-
dimensional nonnegativity requirement of a single minor (minor3×3 � 0), such as (14) to
obtain the results reported earlier here.

To further proceed, in our scheme, we perform the outer two (over zil and zik , in
our example) of the three indicated integration steps in (15)—and its analogs—over the
corresponding cubes for each of two paired minors independently of one another, and then
combine (multiply) the two results together, which are then integrated (in a joint manner)
over the remaining shared/last variable (zij in our illustration here) to derive the new curves
in figure 7. Our approach here, thus, consists in replacing a direct (but intractable) five-
dimensional constrained integration—five being the number of variables parameterizing any
two of the four 3 × 3 principal minors, we want to be simultaneously nonnegative—by a pair
of independent constrained two-dimensional integrations (each member of the pair concerned
with the nonnegativity of only a single minor) conducted over three-dimensional cubes. The
two distinct one-dimensional results obtained are, then, joined by multiplication together into
a single one-dimensional integration (over zij , the shared variable, in our illustration). Since

9
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Figure 8. The two distinct (red and blue) separability functions obtained from enforcing the joint
nonnegativity of the first and fourth 3 × 3 principal minors of the PT—giving the dominant (blue)
curve on the left—as well as the joint nonnegativity of the second and third 3 × 3 principal minors
of the PT. The lesser branches of the two curves define the intermediate curve (13) in figure 7. The

greater branches are described by (16). The value at the intersection is 11 127π2

143 360 ≈ 0.766 037.

there is a factor of
(

3
4

)3 = 27
64 in the three-fold integrals (15), we importantly assign—by

symmetry—a weight of 3
4 to each single-fold integration step taken.

The intermediate curve in figure 7, given by (13), is constructed by taking the lesser
branches of the two curves in figure 8. (The four possible pairings of minors other than the
first with the fourth, and the second with the third, all yield the same dominant curve shown
in figure 7.) The two greater branches in figure 8, together yielding an upper bound on the
separability probability of 7724

525 − 5751π2

4096 ≈ 0.854 936, take the form{
− 3π2 e−6ξ (3 e2ξ (91 e2ξ (9−65 e2ξ )+144)+20)

573440 ξ > 0

− 3π2(2457 e2ξ +432 e4ξ +20 e6ξ −17745)

573440 ξ < 0.
(16)

Let us—similarly as we have done before—take as a new separability function the product
of the two curves displayed in figure 8. The use of this product DESF in formula (4) yields

P HS
sep/real = π2(18 031 791π2 − 177 044 420)

214 × 52 × 72
≈ 0.453 503, (17)

very close to our earlier numerical estimates of 0.453 8838 [9, section V.A.2] [7, section IX.A]
and lying within the confidence range (0.451 634, 0.454 051), we established above. (Possibly,
this product DESF is, in fact, the function that would arise if one could simultaneously
enforce the nonnegativity of all four 3 × 3 principal minors (but see the final paragraph).
However, it lacks the simple functional form repeatedly previously observed above.) We
display this derived product separability function in figure 9 along with the closely fitting
numerical estimate of the true function, already appearing as the subordinate function in
both figures 1 and 7. (If we, in a similar vein, take as a product DESF, the square of
(12), that is, the dominant curve in figure 7—since this arises identically from four of the six
possible pairings of minors—the associated separability probability falls, rather unrealistically
to 0.367 762. So, independence of minor pairings does not appear to be a tenable hypothesis in
this case.)
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2 1 1 2
ξ

0.3

0.4

0.5

0.6

sep. funct.

Figure 9. The (blue) separability function derived by taking the product of the two curves displayed
in figure 8 along with the numerical estimate of the true separability function. The latter (red)
curve crosses the y-intercept at 0.612 243 and the (blue) product DESF at the lesser value of
123 810 129π4

224×52×72 ≈ 0.586 813.

It does, however, appear that we can reduce the y-intercept in figure 7 from 11 127π2

143 360 ≈
0.766 037 to 159 104

231 525 ≈ 0.6872 by enforcing the simultaneous nonnegativity of the second, third
and fourth minors, using repeated integration over cubes.
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